Recognition of Human Pose from Images Based on Graph Spectra
نویسندگان
چکیده
Recognition of human pose is an actual problem in computer vision. To increase the reliability of the recognition it is proposed to use structured information in the form of graphs. The spectrum of graphs is applied for the comparison of the structures. Image skeletonization is used to construct graphs. Line segments are the nodes of the graph. The end point of line segments are the edges of the graph. The angles between adjacent segments are used to set the weights of the adjacency matrix. The Laplacian matrix is used to generate the spectrum graph. The algorithm consists of the following steps. The graph on the basis of the vectorized image is constructed. The angles between the adjacent segments are calculated. The Laplacian matrix on the basis of the linear graph is calculated. The eigenvalues and eigenvectors of the Laplacian matrix are calculated. The spectral matrix is calculated using its eigenvalues and eigenvectors of the Laplacian matrix. The principal component method is used for the data representation in the space of smaller dimensions. The results of the algorithm are given. * Corresponding author
منابع مشابه
Video-based face recognition in color space by graph-based discriminant analysis
Video-based face recognition has attracted significant attention in many applications such as media technology, network security, human-machine interfaces, and automatic access control system in the past decade. The usual way for face recognition is based upon the grayscale image produced by combining the three color component images. In this work, we consider grayscale image as well as color s...
متن کاملFace Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کاملبهبود بازشناسی چهره با یک تصویر از هر فرد به روش تولید تصاویر مجازی توسط شبکههای عصبی
This paper deals with the problem of face recognition from a single image per person by producing virtual images using neural networks. To this aim, the person and variation information are separated and the associated manifolds are estimated using a nonlinear neural information processing model. For increasing the number of training samples in neural classifier, virtual images are produced for...
متن کاملمدلسازی چهره با استفاده از میانگینگیری بر پایه دگردیسی تصویر و تجزیه مرتبه پایین
In video surveillance, the viewing angle of face with respect to camera, called angular occlusion (also referred to as head pose) will limit system’s ability in face recognition. In this paper, a method for angular occlusion elimination in face images is proposed, which is based on image morphing. The proposed method models a frontal face from a batch of images with different head poses b...
متن کاملFace Detection with methods based on color by using Artificial Neural Network
The face Detection methodsis used in order to provide security. The mentioned methods problems are that it cannot be categorized because of the great differences and varieties in the face of individuals. In this paper, face Detection methods has been presented for overcoming upon these problems based on skin color datum. The researcher gathered a face database of 30 individuals consisting of ov...
متن کامل